The Fractional Orthogonal Derivative

نویسندگان

  • Enno Diekema
  • Hari M. Srivastava
چکیده

This paper builds on the notion of the so-called orthogonal derivative, where an n-th order derivative is approximated by an integral involving an orthogonal polynomial of degree n. This notion was reviewed in great detail in a paper by the author and Koornwinder in 2012. Here, an approximation of the Weyl or Riemann–Liouville fractional derivative is considered by replacing the n-th derivative by its approximation in the formula for the fractional derivative. In the case of, for instance, Jacobi polynomials, an explicit formula for the kernel of this approximate fractional derivative can be given. Next, we consider the fractional derivative as a filter and compute the frequency response in the continuous case for the Jacobi polynomials and in the discrete case for the Hahn polynomials. The frequency response in this case is a confluent hypergeometric function. A different approach is discussed, which starts with this explicit frequency response and then obtains the approximate fractional derivative by taking the inverse Fourier transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications

In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel

A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...

متن کامل

An extension of stochastic differential models by using the Grunwald-Letnikov fractional derivative

Stochastic differential equations (SDEs) have been applied by engineers and economists because it can express the behavior of stochastic processes in compact expressions. In this paper, by using Grunwald-Letnikov fractional derivative, the stochastic differential model is improved. Two numerical examples are presented to show efficiency of the proposed model. A numerical optimization approach b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015